Part Number Hot Search : 
DTC643TK 34286G2 LBA120S PSC3506 T520AE 2SK800 15N12 LT3481
Product Description
Full Text Search
 

To Download P6KE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 P6KE SERIES
Transient Voltage Suppressor Diodes
Voltage Range 6.8 to 440 Volts 600 Watts Peak Power 5.0 Watts Steady State
Features
UL Recognized File # E-96005 Plastic package has Underwriters Laboratory Flammability Classification 94V-0 Exceeds environmental standards of MIL-STD-19500 600W surge capability at 10 x 100 us waveform, duty cycle: 0.01% Excellent clamping capability Low zener impedance Fast response time: Typically less than 1.0ps from 0 volts to VBR for unidirectional and 5.0 ns for bidirectional Typical IR less than 1uA above 10V High temperature soldering guaranteed: 260C / 10 seconds / .375",(9.5mm) lead length / 5lbs.,(2.3kg) tension
DO-15
Mechanical Data
Case: Molded plastic Lead: Axial leads, solderable per MIL-STD-202, Lead: Method 208 Polarity: Color band denotes cathode except bipolar Weight: 0.34gram
Dimensions in inches and (millimeters)
Maximum Ratings and Electrical Characteristics
Rating at 25C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load. For capacitive load, derate current by 20%
Type Number
Peak Power Dissipation at TA=25OC, Tp=1ms (Note 1) Steady State Power Dissipation at TL=75 C Lead Lengths .375", 9.5mm (Note 2) Peak Forward Surge Current, 8.3 ms Single Half Sine-wave Superimposed on Rated Load (JEDEC method) (Note 3) Maximum Instantaneous Forward Voltage at 50.0A for Unidirectional Only (Note 4) Operating and Storage Temperature Range
Symbol PPK PD IFSM VF TJ, TSTG
Value Minimum 600 5.0 100 3.5 / 5.0 -55 to + 175
Units Watts Watts Amps Volts C
Notes: 1. Non-repetitive Current Pulse Per Fig. 3 and Derated above TA=25OC Per Fig. 2. 2. Mounted on Copper Pad Area of 1.6 x 1.6" (40 x 40 mm) Per Fig. 4. 3. 8.3ms Single Half Sine-wave or Equivalent Square Wave, Duty Cycle=4 Pulses Per Minutes Maximum. 4. VF=3.5V for Devices of VBR 200V and VF=5.0V Max. for Devices of VBR>200V. Devices for Bipolar Applications 1. For Bidirectional Use C or CA Suffix for Types P6KE6.8 through Types P6KE440. 2. Electrical Characteristics Apply in Both Directions.
- 642 -
RATINGS AND CHARACTERISTIC CURVES (P6KE SERIES)
PEAK PULSE POWER (Ppp) or CURRENT (IPPM) DERATING IN PERCENTAGE, %
FIG.1- PEAK PULSE POWER RATING CURVE
PPPM, PEAK PULSE POWER, KW
100 NON-REPETITIVE PULSE WAVEFORM SHOWN in FIG.3 TJ=250C
FIG.2- PULSE DERATING CURVE
100
75
10
50
1
25
0.1 0.1ms
1.0ms
10ms
100ms
0 0 25 50 75 100 125
o
1.0ms
10ms
150
175
200
tp, PULSE WIDTH, sec.
TA, AMBIENT TEMPERATURE, C
150
PM(AV), STEADY STATE POWER DISSIPATION, WATTS
FIG.3- PULSE WAVEFORM
tr=10msec.
PULSE WIDTH (td) is DEFINED as the POINT WHERE the PEAK CURRENT DECAYS to 50% of lPPM
FIG.4- STEADY STATE POWER DERATING CURVE
5.0
L=0.375"(9.5mm) LEAD LENGTHS 60Hz RESISTIVE OR INDUCTIVE LOAD
PEAK PULSE CURRENT - %
100
PEAK VALUE lPPM
3.75
50
HALF VALUE- lPPM 2 10/1000 sec. WAVEFORM as DEFINED by R.E.A.
2.5
1.6 X 1.6 X .040" (40 X 40 X 1mm.) COPPER HEAT SINKS
1.25
0 0
td
1.0
2.0 t, TIME, ms
3.0
4.0
0
0
25
50
75
100
125
o
150
175
200
TL, LEAD TEMPERATURE, C
lFSM, PEAK FORWARD SURGE CURRENT, AMPERES
200
FIG.5- MAXIMUM NON-REPETITIVE FORWARD SURGE CURRENT UNIDIRECTIONAL ONLY
8.3ms Single Half Sine Wave JEDEC Method
6,000
FIG.7- TYPICAL JUNCTION CAPACITANCE UNIDIRECTIONAL
MEASURED at ZERO BIAS
Tj=25 0C f=1.0MHz Vsig=50mVp-p
100
1,000
CJ, JUNCTION CAPACITANCE.(pF)
10 1 10 NUMBER OF CYCLES AT 60Hz
100
100
MEASURED at STAND-OFF VOLTAGE, VWM
lD, INSTANTANEOUS REVERSE LEAKAGE CURRENT, MICROAMPERES
FIG.6- TYPICAL REVERSE LEAKAGE CHARACTERASTICS
1,000 100 10 1 0.1 0.01 TJ=25 0C 0 100 200 300 400 500 MEASURED AT DEVICES STAND-OFF VOLTAGE, VWM
10
1
10 V(BR), BREAKDOWN VOLTAGE. VOLTS
100
200
0.001
V(BR), BREAKDOWN VOLTAGE. VOLTS
- 643 -
ELECTRICAL CHARACTERISTICS (TA=25OC unless otherwise noted)
Device Nominal Voltage (Volts)
6.8 6.8 7.5 7.5 8.2 8.2 9.1 9.1 10 10 11 11 12 12 13 13 15 15 16 16 18 18 20 20 22 22 24 24 27 27 30 30 33 33 36 36 39 39 43 43 47 47 51 51 56 56 62 62 68 68 75 75 82 82 91 91 100 100 110 110 120 120 130 130 150 150 160 160 170 170 180 180 200 200 220 220 250 250 300 300 350 350 400 400 440 440
Breakdown Voltage VBR (Volts) (Note 1) Min Max
6.12 6.45 6.75 7.13 7.38 7.79 8.19 8.65 9.00 9.50 9.90 10.5 10.8 11.4 11.7 12.4 13.5 14.3 14.4 15.2 16.2 17.1 18.0 19.0 19.8 20.9 21.6 22.8 24.3 25.7 27.0 28.5 29.7 31.4 32.4 34.2 35.1 37.1 38.7 40.9 42.3 44.7 45.9 48.5 50.4 53.2 55.8 58.9 61.2 64.6 67.5 71.3 73.8 77.9 81.9 86.5 90.0 95.0 99.0 105.0 108.0 114.0 117.0 124.0 135.0 143.0 144.0 152.0 153.0 162.0 162.0 171.0 180.0 190.0 198.0 209.0 225.0 237.0 270.0 285.0 315.0 332.0 360.0 380.0 396.0 418.0 7.48 7.14 8.25 7.88 9.02 8.61 10.0 9.55 11.0 10.5 12.1 11.6 13.2 12.6 14.3 13.7 16.5 15.8 17.6 16.8 19.8 18.9 22.0 21.0 24.2 23.1 26.4 25.2 29.7 28.4 33.0 31.5 36.3 34.7 39.6 37.8 42.9 41.0 47.3 45.2 51.7 49.4 56.1 53.6 61.6 58.8 68.2 65.1 74.8 71.4 82.5 78.8 90.2 86.1 100.0 95.5 110.0 105.0 121.0 116.0 132.0 126.0 143.0 137.0 165.0 158.0 176.0 168.0 187.0 179.0 198.0 189.0 220.0 210.0 242.0 231.0 275.0 263.0 330.0 315.0 385.0 368.0 440.0 420.0 484.0 462.0
Test Current @IT (mA)
10 10 10 10 10 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Stand-Off Voltage VWM (Volts)
5.50 5.80 6.05 6.40 6.63 7.02 7.37 7.78 8.10 8.55 8.92 9.40 9.72 10.2 10.5 11.1 12.1 12.8 12.9 13.6 14.5 15.3 16.2 17.1 17.8 18.8 19.4 20.5 21.8 23.1 24.3 25.6 26.8 28.2 29.1 30.8 31.6 33.3 34.8 36.8 38.1 40.2 41.3 43.6 45.4 47.8 50.2 53.0 55.1 58.1 60.7 64.1 66.4 70.1 73.7 77.8 81.0 85.5 89.2 94.0 97.2 102.0 105.0 111.0 121.0 128.0 130.0 136.0 138.0 145.0 146.0 154.0 162.0 171.0 175.0 185.0 202.0 214.0 243.0 256.0 284.0 300.0 324.0 342.0 356.0 376.0
Maximum Maximum Maximum Maximum Reverse Leakage Peak Pulse Clamping Temperature at VWM Current IRSM Voltage at IPPM Coefficient O ID (uA) (Note 2)(Amps) VC(Volts) of VBR(% / C)
1000 1000 500 500 200 200 50 50 10 10 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 58 60 53 55 50 52 45 47 42 43 38 40 36 37 33 34 28 29 26 28 23 25 21 22 19 20 18 19 16 16.8 14 15 13.0 13.8 12 12.6 11.1 11.6 10.0 10.6 9.2 9.7 8.5 8.9 7.8 8.1 7.0 7.4 6.4 6.8 5.8 6.1 5.3 5.5 4.8 5.0 4.3 4.5 3.9 4.1 3.6 3.8 3.3 3.5 2.9 3.0 2.7 2.8 2.5 2.6 2.4 2.5 2.1 2.2 1.8 1.9 1.7 1.8 1.4 1.5 1.2 1.3 1.05 1.1 0.99 1.04 10.8 10.5 11.7 11.3 12.5 12.1 13.8 13.4 15.0 14.5 16.2 15.6 17.3 16.7 19.0 18.2 22.0 21.2 23.5 22.5 26.5 25.2 29.1 27.7 31.9 30.6 34.7 33.2 39.1 37.5 43.5 41.4 47.7 45.7 52.0 49.9 56.4 53.9 61.9 59.3 67.8 64.8 73.5 70.1 80.5 77.0 89.0 85.0 98.0 92.0 108.0 103.0 118.0 113.0 131.0 125.0 144.0 137.0 158.0 152.0 173.0 165.0 187.0 179.0 215.0 207.0 230.0 219.0 244.0 234.0 258.0 246.0 287.0 274.0 344.0 328.0 360.0 344.0 430.0 414.0 504.0 482.0 574.0 548.0 631.0 600.0 0.057 0.057 0.061 0.061 0.065 0.065 0.068 0.068 0.073 0.073 0.075 0.075 0.078 0.078 0.081 0.081 0.084 0.084 0.086 0.086 0.088 0.088 0.090 0.090 0.092 0.092 0.094 0.094 0.096 0.096 0.097 0.097 0.098 0.098 0.099 0.099 0.100 0.100 0.101 0.101 0.101 0.101 0.102 0.102 0.103 0.103 0.104 0.104 0.104 0.104 0.105 0.105 0.105 0.105 0.106 0.106 0.106 0.106 0.107 0.107 0.107 0.107 0.107 0.107 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.108 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110 0.110
P6KE6.8 P6KE6.8A P6KE7.5 P6KE7.5A P6KE8.2 P6KE8.2A P6KE9.1 P6KE9.1A P6KE10 P6KE10A P6KE11 P6KE11A P6KE12 P6KE12A P6KE13 P6KE13A P6KE15 P6KE15A P6KE16 P6KE16A P6KE18 P6KE18A P6KE20 P6KE20A P6KE22 P6KE22A P6KE24 P6KE24A P6KE27 P6KE27A P6KE30 P6KE30A P6KE33 P6KE33A P6KE36 P6KE36A P6KE39 P6KE39A P6KE43 P6KE43A P6KE47 P6KE47A P6KE51 P6KE51A P6KE56 P6KE56A P6KE62 P6KE62A P6KE68 P6KE68A P6KE75 P6KE75A P6KE82 P6KE82A P6KE91 P6KE91A P6KE100 P6KE100A P6KE110 P6KE110A P6KE120 P6KE120A P6KE130 P6KE130A P6KE150 P6KE150A P6KE160 P6KE160A P6KE170 P6KE170A P6KE180 P6KE180A P6KE200 P6KE200A P6KE220 P6KE220A P6KE250 P6KE250A P6KE300 P6KE300A P6KE350 P6KE350A P6KE400 P6KE400A P6KE440 P6KE440A
Notes: 1. VBR measured after IT applied for 300us, IT=square wave pulse or equivalent. 2. Surge current waverform per Figure 3 and derate per Figure 2. 3. For bipolar types having VWM of 10 volts and under, the ID limit is doubled. 4. All terms and symbols are consistent with ANSI/IEEE C62.35.
- 644 -
TVS APPLICATION NOTES:
Transient Voltage Suppressors may be used at various points in a circuit to provide various degrees of protection. The following is a typical linear power supply with transient voltage suppressor units placed at different points. All provide protection of the load.
FIGURE 1
Transient Voltage Suppressors 1 provides maximum protection. However, the system will probably require replacement of the line fuse(F) since it provides a dominant portion of the series impedance when a surge is encountered. However, we do not recommend to use the TVS diode here, unless we can know the electric circuit impedance and the magnitude of surge rushed into the circuit. Otherwise the TVS diode is easy to be destroyed by voltage surge. Transient Voltage Suppressor 2 provides execllent protection of circuitry excluding the transformer(T). However, since the transformer is a large part of the series impedance, the chance of the line fuse opening during the surge condition is reduced. Transient Voltage Suppressor 3 provides the load with complete protection. It uses a unidirectional Transient Voltage Suppressor, which is a cost advantage. The series impedance now includes the line fuse, transformer, and bridge rectifier(B) so failure of the line fuse is further reduced. If only Transient Voltage Suppressor 3 is in use, then the bridge rectifier is unprotected and would require a higher voltage and current rating to prevent failure by transients. Any combination of these three, or any one of these applications, will prevent damage to the load. This would require varying trade-offs in power supply protection versus maintenance(changing the time fuse). An additional method is to utilize the Transient Voltage Suppressor units as a controlled avalanche bridge. This reduces the parts count and incorporates the protection within the bridge rectifier.
FIGURE 2
- 645 -


▲Up To Search▲   

 
Price & Availability of P6KE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X